Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.
نویسندگان
چکیده
Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted.
منابع مشابه
Psychophysical evidence for interactions between visual motion and form processing at the level of motion integrating receptive fields.
Recent physiological and psychophysical research has challenged the traditional view that motion and form information are processed in distinct, parallel pathways in the visual system. Rapid movement creates 'motion-streaks' parallel to the motion trajectory, which facilitate motion detection. Some motion-selective neurons in striate and extrastriate cortex are sensitive to motion parallel to t...
متن کاملInteractions between motion and form processing in the human visual system
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by int...
متن کاملHuman Path Integration by Optic Flow
Path integration or ‘dead reckoning’ is the ability to keep track of relative position using self-motion signals that convey information about speed and direction of movement. Most animal species, including humans, exhibit some degree of path integration capability and neurophysiological studies have demonstrated that self-motion signals are sufficient to update internal representations of both...
متن کامل16 Vestibular , Proprioceptive , and Visual Influences on the Perception of Orientation and Self - Motion in - Humans
As people move about, they perceive changes in their orientation and position in the environment, and can update these values with respect to significant locations in space. Analytically, self-motion can be decomposed into two components: (1) observer rotation, which has a direction (pitch, yaw, roll), an angular speed, and a total angular displacement ; and (2) observer translation, which also...
متن کاملInteractions between ON and OFF signals in directional motion detectors feeding the not of the wallaby.
An apparent motion stimulus is used to probe the interactions between signals representing brightness increments (ON stimuli) and decrements (OFF stimuli) in the directional motion detectors forming the input to the nucleus of the optic tract (NOT) of the wallaby, Macropus eugenii. Direction-selective NOT neurons increase their firing rates during image motion from temporal-to-nasal over the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2013